Flavor analysis and research at the University of Minnesota

Jean-Paul Schirlé-Keller
jpsk@spectraflavor.com
Agenda

- Introduction
- Presentation of Research
- Questions
Flavor Laboratory

Professor Dr. Gary Reineccius

- 2 Research associates
- 1 Post-doctoral
- 9 graduate students
 - 4 M.S.
 - 5 Ph.D.
- 2 interns
- 2 technicians
Flavor laboratory (cont.)

- Diversity
 - People
 - Projects
- Strong ties to Industry
 - Short term issues: Off-flavor issues
 - Long term research (proprietary)
Research

♦ Diverse

♦ Stability of flavor emulsions
♦ Flavor performance as affected by process
 ♦ Raw ingredients
 ♦ Physical parameters
 ♦ Cooking temperature
 ♦ Storage (temperature, time)
♦ Flavor release
Flavor analysis 101

- multitude of possible protocols, all biased
- single analysis rarely enough depending of goals
- probably the most under estimated portion

- injection
- separation
- detection

- identification
- quantification
- learnings
Current equipment
Current equipment (cont.)

- Gerstel TDS
- Gerstel CIS
Twister
Method choice

- Dictated by:
 - Need for unbiased (i.e. fresh vs cooked)
 - Need for sensitivity (compared to static headspace)
 - Number of samples to analyze (>600 for the whole study)
 - Time available
Stir bar much more efficient than SPME
SPME work with MPS

Storage studies analysis

- Stability of flavor chemicals in a proprietary matrix under MAP conditions.

- Evolution of flavor profile of pasteurized flavored milk over shelflife
Stability of flavor chemicals under MAP

- 2 dozens of flavor compounds
 - Different chemical families
 - Different concentration

- Analyzed over 6 months as a function of:
 - time
 - Temperature
 - Chemical reactivity
Stability of flavor chemicals under MAP (cont)

- Study set for 1200+ analyses not including:
 - Standard curves
 - Development methodology

- Only doable with MPS
Stability of flavor chemicals under MAP (cont)

- Protocol
 - Sample (1 g in 20ml HS vial)
 - Equilibration 1 hr with PDMS/CAR/DVB at 50°C
 - Injection 5 min
 - Analysis in SIM
 - Duplicate analysis
Total ions chromatograms

4 month
Extended shelflife of flavored milk

♦ Goal
 Understand the shelflife of flavored milk
 4 different milks (including a control)
♦ Protocol (done in triplicate)
 ♦ Equilibration of milk 45min at 45°C
 ♦ Exposure of fiber (CARB/PDMS) 10min
 ♦ Desorption 10 min at 250°C
Results - Strawberry Milk

Strawberry Milk (flavored initially)

-40
-35
-30
-25
-20
-15
-10
-5
0

week

percentage change

- - - - acetone
- - - ethyl butyrate
- - ethyl-2-hydroxy propanoate
- - - cis-3-hexenol
Limitations of analytical method

- Review article from Nongonierma A. et al.
 - Competitive binding on fiber - quantification changes with other compounds adsorbed
 - Limited life of fiber (100 uses)
 - Fiber performance changes with time
 - Fibers vary in performance - (change fiber during study due to breakage)

- Implications
 - Data must be considered in terms of trends as opposed to individual data points
 - Not absolute values but relative values
Theoretical Recovery

\[\frac{m_{PDMS}}{m_o} = \frac{k_{PDMS/w} / \dot{E}}{1 + k_{PDMS/w} / \dot{E}} \]

Where:
- \(m_{PDMS} / m_o \) = fraction of aroma compound isolated
- \(k_{PDMS/w} \) = partition coefficient between fiber and food continuous phase
- \(m_o \) = total mass of analyte in food
- \(\dot{E} \) = phase ratio e.g. V aqueous phase/ V extracting phase (PDMS)
Equation:

- Low Log P and low phase ratio characteristic of the method make isolation inefficient.

- E.g. SPME fiber generally has about 0.5 Él of phase

Solution: stir bar method
Twister

- Advantages
 - Increased phase material
 - Increased surface area

- Type of extract
 - Headspace
 - Direct
Current/recent projects

- Flavor volatiles from crackers
- Flavor volatiles from flavor solutions
 - reconstituted
 - diluted
- Flavor volatiles from vegetable sauces
- Flavor volatiles from plant material
- Flavor volatiles in wines
- Flavor volatiles in mouth
Flavor volatiles from baked goods

♦ Goal
 ♦ Determine presence of compounds of interest
 ♦ Compare different extraction techniques

♦ Protocol (done in triplicate)
 50g of crackers in a jar (whole or ground)
 ♦ Twister:
 ♦ Twister placed on top of a Teflon mesh
 ♦ Equilibration 1hr at 30°C, 37°C, 45°C
 ♦ Desorption splitless (+ cryofocusing) 5 min at 250°C
 ♦ Purge and trap:
 ♦ 30 min at 45°C, 40 ml / min
 ♦ Desorption splitless (+ cryofocusing) 10 min at 250°C
2-Methyl-butanal (ion 57)
Pentanal (ion 44)
Furfural
Furfuryl alcohol
p-Xylene
Heptanal
g-Butyrolactone
z(2)Heptenal
Benzaldehyde
2-Pentylfurane
Octanal
Limonene
E-2-Octenal
Nonanal
Phenylethylalcohol

Twister
Purge&Trap

37°C
45°C
Flavor volatiles in flavor solutions

- **Goal**
 - Determine the difference in flavor compounds due to processing

- **Protocol (done in duplicate)**
 - 10 ml of reconstituted beverage
 - Twister: exposure 45min at RT, desorbed splitless (+ cryofocusing) 5min at 250ºC
 - SPME-PDMS fiber (1 ml, 10min at RT), injection splitless at 250ºC
Flavor volatiles in sauces

♦ Goal:
 ♦ Determine the
 ♦ Difference in flavor profile
 ♦ Origins

♦ Protocol (done in triplicate)
 ♦ 100g sauce placed in a jar
 ♦ Twister placed over sauce on a Teflon mesh
 ♦ Exposure 30 min at 37°C
 ♦ Desorbed splitless (+ cryofocusing) 5 min at 250°C
Flavor volatiles in plants

- **Goal**

 determine volatile components of flowers

- **Protocol**

 - Twisters (10) placed in round bottom flask
 - Round bottom flask placed over bud before bloom
 - Twisters exposed 12 hrs at 15°C
 - Desorbed splitless (+ cryofocusing) 5 min at 250°C
Triplicates of flower extract

T. 1
- benzyl alcohol
- Trans-β-ocimene
- benzaldehyde
- nerolidol

T. 2

T. 3
Flavor volatiles in wines

♦ Goal:
 determine differences in flavor volatiles between wine and correlate to sensory profile, plant variety.

♦ Protocol:
 ♦ Twister placed into 10 ml wine
 ♦ Equilibrated for 1.5hr at room temperature
 ♦ Desorbed splitless (+ cryofocusing) 10 min at 270ºC
Fontenac 03

St Croix 02

Fontenac 99
Flavor volatiles in mouth

♦ Goal
understand the effect of some particular mouthwash components on the decrease of sulfur compounds responsible for bad breath

♦ Protocol (in triplicate)
♦ Twister placed in mouth for 5 mins
♦ Dried (KimWhip)
♦ desorbed in splitless (+ cryofocusing) 5 min at 190°C
Analysis of sulfur compounds

H$_2$S
300ppm

Dimethyl Sulfide
30ppb
Summary

- **Twister: big improvement**
 - More phase, better sensitivity
 - Easier, more reproducible, more stable
- **Limitations?**
 - fat matrices
 - carry over
 - cryofocusing
Summary

- The Automatic Liner Exchange: ALEX
Acknowledgments

Questions

Segolène Leclerc
Daniel Martinez
Debbie Paetzick
Deena Strohman